ACOUSTIC SCENE ANALYSIS BASED ON POWER DECOMPOSITION

Alain de Cheveigné, Michael Slama

CNRS, Université Paris 5, Ecole Normale Supérieure,
29 rue d’Ulm, F-75230, Paris, France,
Alain.de.Cheveigne@ens.fr

ABSTRACT

A method is proposed for the analysis of complex acoustic scenes. The contribution of each competing source is suppressed on the basis of harmonic structure or cross-sensor correlation, in such a way as to allow the other sources to be estimated. Successive suppression of sources allows the scene to be characterized. In the limit of purely periodic sources and no noise, the method provides accurate estimates of fundamental frequency and spectral content. In the presence of noise or imperfect periodicity, the method provides likelihood functions for these parameters, from which the spectral content of sources may be inferred using Bayesian methods. The method is an alternative to more familiar spectral and spectrotemporal methods of acoustic scene analysis. An advantage is that precise analysis is possible using short temporal windows.

1. INTRODUCTION

Cherry [1] coined the expression “cocktail party effect” to refer to our ability to understand the overlapping speech of several speakers, a task which human listeners still perform better than machines [2]. Many efforts have attempted to replicate our remarkable skills of Auditory Scene Analysis (ASA) [3] in what are known as Computational Auditory Scene Analysis (CASA) systems. Pioneering work was done by Parsons [4] and WeintraubWeintraub85; more recent efforts are reviewed by Cooke and Ellis [5] and others [6, 7, 8]. Besides perception-inspired approaches, recent progress has been made using statistical and machine-learning techniques (e.g. [9, 10]).

Analysis usually operates on a spectro-temporal representation produced either by a short-term Fourier transform (STFT) or an auditory filterbank. It is thus crucially dependent on the choice of analysis parameters such as window shape and size, or filter shape and bandwidth. There is a well-known tradeoff between temporal and spectral resolution [11]. The best choice of parameters is usually signal-dependent; values appropriate for one task may be less good for another. For any given acoustic scene, performance may be reduced by the suboptimality of the representation (although the situation may be improved by the use of overcomplete bases, e.g. [12]).

This paper proposes instead as starting point representations based on running power and autocorrelation functions (ACF). The goal is to “make sense” of the scene, either by extracting useful signal parameters such as fundamental frequency (F_0) or spectral envelope, or by allowing a pattern-matching stage to access voices within the scene (for example to perform automatic speech recognition, or content-based retrieval of musical). We suppose that the observable input is a single-channel signal, although results can be extended to multichannel processing.

2. INGREDIENTS

This section introduces required ingredients and notations. Given a signal $x(t)$, the running autocorrelation function is defined as:

$$\langle x \rangle_t(\tau) = \frac{1}{W} \sum_{i=t+1}^{i+W} x(i)x(i-\tau)$$

where τ is the lag, t indexes the time at which the calculation was made, and W is the size of the integration window. W determines the amount of temporal smoothing applied to the statistic. The definition differs from that of the more common short-term autocorrelation function:

$$\frac{1}{W} \sum_{i=t+1}^{i+W-\tau} x(i)x(i-\tau)$$

by the upper limit of the integration. That definition is common because it is related to the short-term power spectrum and can be efficiently implemented based on the FFT. Its main drawbacks are that the amount of temporal smoothing varies with τ and vanishes as τ approaches W. In Eq. 1 the integration time is instead independent of τ, and the running ACF can thus be calculated for arbitrary τ. The running power of the signal indexed by time t is defined as:

$$||x||_t = \langle x \rangle_t(0)$$
Given a candidate period \(T \), we define the periodic-aperiodic power decomposition of \(x \) using the following notation:

\[
\begin{align*}
x^{-T}(t) &= \frac{[x(t) + x(t - T)]}{2} \\
x^{+T}(t) &= \frac{[x(t) - x(t - T)]}{2}.
\end{align*}
\]

These are simply time-domain comb-filtered versions of \(x \) that sum up to \(x \):

\[
x = x^{+T} + x^{-T}.
\]

They constitute a partition of its power in the sense that:

\[
(||x||_t + ||x||_{t-T})/2 = ||x^{+T}||_t + ||x^{-T}||_t. \tag{5}
\]

The left hand is the average of two estimates of the power. This decomposition is useful for at least three reasons: (a) If \(x \) is periodic with period \(T \), then \(x^{+T} = x \) and \(x^{-T} = 0 \). In this sense, we can interpret \(x^{+T} \) and \(x^{-T} \) as the "periodic" and "aperiodic" parts of \(x \). (b) From Parseval’s relation it follows that the decomposition applies also to short-term power spectra:

\[
X^{+T}(\omega)_t + X^{-T}(\omega)_t = (X(\omega)_t + X(\omega)_{t-T})/2,
\]

where \(X(\omega)_t \) designates the short-term power spectrum calculated at \(t \). In other words, the power spectrum of \(x \) can be split into periodic and aperiodic parts. This can also be understood by noting that Eq. 4 defines filters with transfer functions \(H^{+T}(\omega) = \cos^2(\omega T) \) and \(H^{-T}(\omega) = \sin^2(\omega T) \) that sum to one for all \(\omega \). (c) The decomposition can be generalized to more than two terms, as discussed below.

The squared difference function (SDF) is defined as:

\[
d_t(\tau) = (1/W) \sum_{i=t+1}^{i+W} [x(i) - x(i - \tau)]^2 \nonumber \\
= ||x^{-\tau}||_t. \tag{6}
\]

This is simply the euclidean distance between windows of size \(W \) shifted by \(\tau \), related to the running ACF by:

\[
d_t(\tau) = ||x||_t + ||x||_{t-\tau} - 2<x>(\tau) \tag{7}
\]

To the extent that the first two terms are constant (\(W \) large, or \(x \) periodic and \(W \) multiple of the period), the ACF and SDF are "equivalent" and offer the same information.

We will need quantities such as \(<x>(\tau)\) or \(d_t(\tau)\) for arbitrary values of \(t \), \(\tau \), and \(W \). Computational efficiency is not our main focus, but it is worth saying a few words about the issue. The running ACF may be implemented by FFT as the cross-correlation between a window of size \(W \) and a window of size \(W + 2\tau_{\text{MAX}} \), where \(\tau_{\text{MAX}} \) is the maximum required lag. An FFT-based formula is efficient if the statistic is calculated sparsely in time, but higher frame rates an incremental formula may be more efficient, as illustrated here for power:

\[
||x||_t = ||x||_{t-1} - x(t)^2 + x(t + W)^2.
\]

Similar formulae exist for the running ACF and SDF. If \(<x>(\tau)\) has been calculated for the required range of \(t \) and \(\tau \), other useful statistics can be derived cheaply according to formulae such as Eq. 7. By carefully arranging these precalculated values, it is possible to derive values for arbitrary \(W \) at cost (\(o(\log W) \)). Quadratic interpolation formulae can be used to derive values for non-integer values of \(t \), \(\tau \), and \(W \).

To summarize, the ingredients required by the methods to be described (power, running ACF, SDF, and derived statistics) can be calculated at a reasonable computational cost.

3. \(F_0 \) ESTIMATION

3.1. Single \(F_0 \) estimation

Supposing the observed signal \(x(t) \) is quasiperiodic, its period at time \(t \) can be found by searching over lags \(\tau \) for a minimum of \(||x^{+\tau}|| \). This is the basis of the YIN method of fundamental frequency estimation that is described and evaluated in [13].

3.2. Multiple \(F_0 \) estimation

Supposing the observed signal \(x(t) \) is the sum of two or more quasiperiodic voices, their \(F_0 \)’s can be estimated by deriving an initial estimate \(T^* \) of one voice using a single-voice algorithm and applying a time-domain comb filter tuned to \(T^* \) to suppress that voice so that the others can be more easily estimated. Repeating the operation for each voice in the mixture, all periods may be estimated. Concretely, a method such as YIN is applied to the mixture to obtain \(T \), and then applied again to the comb-filtered signal \(x^{-T} \) to obtain a second estimate \(T' \). The comb filter may then be tuned to \(T' \) to refine the estimate of \(T \), or else the method may be applied to \(x^{-T-T'} \) to estimate a third period, etc. This is the basis of the MMM method of multiple \(F_0 \) estimation described in [14, 15].

4. SPECTRAL ESTIMATION

The stage is now set for the analysis of acoustic scenes containing periodic or quasiperiodic voices. Important information is usually lost in the mixing operation from which observable signal(s) are derived, and no general solution exists to extract all component voices in all cases. Instead, we should aim at developing methods to extract the partial information that is available in each case, and then piece them together using model-based techniques, e.g. within a Bayesian framework. Some of these methods are outlined here.

4.1. Single periodic voice

If the observed signal \(x \) is periodic and the period \(T \) is an integer multiple of the sampling period, the power spectrum can be derived exactly from the DFT of \(x \) over a \(T \)-sized window.
Alternatively, its ACF can be derived from Eq. 1 if \(W = T \) (or \(W \) large). Period estimation requires a signal segment of about \(2T \) (see [13] for a more precise discussion), and spectral estimation a segment of \(T \), so accurate analysis of this simple scene requires only \(2T \). If \(T \) is not a multiple of the sampling period, interpolation techniques may be applied.

4.2. Periodic voice plus noise

If the observed signal \(x \) is the sum of a periodic signal \(s \) of period \(T \) and a noise signal \(n \), phase and amplitude uncertainties prevent perfect estimation. However relatively accurate estimates can be provided for \(n \) if the distribution of \(s \) is known. Applying the “periodic-aperiodic” decomposition, we know that: \(n = s \) because \(s \) maps to zero. It follows that the short-term power spectrum \(N^{-T}(\omega) \) can be accurately obtained from the observed signal.

On the other hand \(N^{+T}(\omega) \) is inextricably confounded with \(S(\omega) \), and thus neither \(N(\omega) \) nor \(S(\omega) \) can be measured. However if we suppose that the process that produces \(n \) has a “smooth” spectrum, we can use \(N^{-T}(\omega) \) as an approximation of \(N^{+T}(\omega) \), and thus characterize the “noisy” part of the signal. Furthermore, \(N^{+T}(\omega) \) can be used to characterize the error incurred if \(S(\omega) \) were approximated by \(X(\omega) \). More precisely, if noise follows a distribution for which the mean is a sufficient statistic, we can use \(N^{+T}(\omega) \) to parametrize the likelihood of \(S(\omega) \) given the observation.

If \(T \) is estimated from \(x \), the effect of estimation error must be taken into account. This involves two steps: (a) deriving the expected distribution of \(T \) given a noisy observation and (b) translating error on \(T \) in terms of error on \(N(\omega)^{-T} \). The likelihood function is adjusted accordingly. The periodic-voice-plus-noise model may be used to address the case of a slowly-varying periodic signal, or the periodic model may be extended to handle e.g. amplitude variations [14].

4.3. Two periodic voices

Suppose that the observed \(x \) is the sum of two periodic signals \(s \) and \(s' \) with periods \(T \) and \(T' \). The previous “periodic-aperiodic decomposition” can be extended so that \(x \) is split into four terms:

\[
x^{+T+T'}(t) = [x(t)+x(t-T)+x(t-T')\pm x(t-T-T')]/4
\]
\[
x^{+T-T'}(t) = [x(t)+x(t-T)+x(t-T')\mp x(t-T-T')]/4
\]
\[
x^{-T+T'}(t) = [x(t)-x(t-T)+x(t-T')\pm x(t-T-T')]/4
\]
\[
x^{-T-T'}(t) = [x(t)-x(t-T)+x(t-T')\mp x(t-T-T')]/4
\]

Indeed the terms sum up to \(x \):

\[
x = x^{+T+T'} + x^{+T-T'} + x^{-T+T'} + x^{-T-T'}
\]

and their powers sum up to that of \(x \):

\[
||x^{+T+T'}||^2 + ||x^{+T-T'}||^2 + ||x^{-T+T'}||^2 + ||x^{-T-T'}||^2 = (||x||^2 + ||x||_{-T} + ||x||_{-T'} + ||x||_{-T-T'})/4.
\]

This decomposition is useful in how it depends on components \(s \) and \(s' \) of the mixture. The second term \(x^{+T-T'} \) depends only on \(s \), while the third \(x^{-T+T'} \) depends only on \(s' \). The fourth depends on neither and is zero if the signals are perfectly periodic, whereas the first term depends on both, and represents power that cannot be assigned to either source given the observation. Again, thanks to Parseval’s relation, Eq. 10 applies also to power spectra. \(F_0 \) estimation requires on the order of \(3T' \) (supposing \(T > T' \)) and spectral estimation on the order of \(2T' \), so accurate analysis of this scene requires a signal interval of only about \(3T' \).

4.4. Two periodic voices with noise

Suppose that \(x = s + s' + n \), where \(s \) and \(s' \) are periodic sources with known periods \(T \) and \(T' \), and \(n \) is noise. The previous decomposition can again be applied. The power of the noise is split among the four coefficients; in particular \(||x^{-T-T'}||^2 \) is no longer zero. As in the single-voice-with-noise case, this coefficient can be used to estimate the amplitude and spectrum of the noise, which in turn can be used to parametrize likelihood functions for the sources, given the observation.

5. GENERALIZING THE APPROACH

Similar techniques can be applied to a larger number of sources, as well as to a larger number of observations (e.g. multiple microphones). A strength is that analysis requires short windows, and can thus track time-varying signals. Typically a source (voice, instrument) may go through intervals of stability during which it is amenable to accurate processing, and intervals of transition, during which estimates are degraded. An appropriate strategy is to assign stronger weight to information gathered during the former than during the latter. Residual power (\(||x^{-T}||, ||x^{-T-T'}|| \)) can be used to locate islands of reliability.

Longer intervals of stability can be used to improve the periodic-aperiodic decomposition. For example in the single-voice-plus-noise case, a 3-period analysis frame would allow the decomposition of Eq. 8 to be applied with \(T' = T \) to obtain four terms. The first \(||x^{+T+T'}||^2 \) implements a relatively narrow “harmonic sieve” tuned to \(T \), while the other terms gather power that does pass the sieve. This can be understood in the spectral domain: \(H^{+T}(\omega) = \cos^4(\omega T) \) has relatively narrow peaks. Longer periods of stability ensure yet-sharper selectivity.

Finally, the method can be combined with spectrottemporal approaches by applying it to channels of a filterbank [16].
6. DISCUSSION

This paper presented a framework for acoustic scene analysis based on the harmonic structure of one or more sources. The aim is to extract as much useful information as possible from observations, subject to the fact that some information is irremediably lost in the mixing. Here we assumed a single observable signal (single microphone), but similar principles can be applied to the analysis of multichannel observations (multiple microphones).

Analysis can be performed accurately on very short frames of data, which is useful for tracking rapidly varying signals. In an ideal situation (no noise, perfect periodicity over the analysis frame), analysis produces an accurate but possibly incomplete estimate of component spectra. In the presence of noise or imperfect periodicity, it produces instead an estimate of the distribution of target values conditional on the observation.

Power-based analysis is an alternative to standard spectral methods that involve an initial STFT applied to windowed frames of data. Those methods operate on the series of short-term spectra (magnitude or complex). The size and shape of the analysis window are important parameters that are hard to choose, given the tradeoff between spectral and temporal resolution, and remain as "nuisance" parameters in the analysis. Here, the only important parameter is the duration W of the integration window, that determines the temporal stability of the analysis but not its spectral resolution.

The "periodic-aperiodic" decompositions (Eqs. 4, 8) are analogous to a power spectrum in the sense that they obey a form of Parseval's relation (Eqs. 5, 10). They have the useful property that they can isolate parts that do not depend on a source. It has been argued that this is an essential trait of a good representation for acoustic scene analysis [16].

A key premiss to addressing the "cocktail party problem" is that mixing destroys information, and thus the problem cannot be solved with full generality. Rather, one must rely on regularity and redundancy of the sources or scene to form models that can be constrained by the parcelary information that is derivable, sometimes with perfect accuracy, from the observed signals. Bayesian methods provide a good framework for this purpose, but they are usually applied to short-term spectral representations. We suggest that they should be applied to the autocorrelation- and power-based representations such as we have sketched out here.

Acknowledgements

This research was funded in part by the S2S2 initiative of the European Community. This paper was prepared while on leave at Shihab Shamma's lab at the Institute of Systems Research, University of Maryland.

7. REFERENCES